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ABSTRACT 

 

In epidemiological research, Lnight has been used as an indicator to assess the impact of sound 
on sleep. The predictive superiority of noise events and their level has nevertheless been 
shown in laboratory sleep studies. Therefore, developing a novel indicator for sleep 
disturbance that captures noise events might be an asset. However, although such an 
indicator might have a higher biological validity, its practical applicability might be hindered by 
the complexity and cpu-time requirements of its simulation. Therefore, the new sleep 
disturbance indicator (SDI) that we propose is flanked by an efficient model grounded in 
machine learning to estimate it at any dwelling in Europe. The model is trained on a vast 
number of numerical simulations for distinct locations and road traffic situations. It is applied 
to a dataset of children’s non-targeted sleep problems and health, collected in the Alpine 
region, showing that the model can predict Lnight and SDI sufficiently accurately to explain at 
least as much of the variance in sleep problems as detailed noise estimation models. 
Moreover, it highlighted the importance of the quiet side of the building. 
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INTRODUCTION  

The neighbourhood physical environment is an important determinant of children's sleep 
quality and sleep duration. Studies on transportation noise have shown well-known direct 
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short-term effects on sleep, annoyance, and cognition in both, adults and children. Less is 
known about the long-term effects of sleep disturbance by noise on children and adolescents, 
although some evidence points to effects of impaired sleep on cognitive, mental and physical 
health outcomes [1]. However, these studies have inherent shortcomings. The hitherto used 
exposure characterisation is very crude (i.e., average sound levels) and has not considered 
the role of soundscape and the wider context of the neighbourhood built environment. 
Moreover, existing studies have methodological shortcomings, as analyses related to the 
potential mediating role of sleep impairment on health outcomes have not been seriously 
considered. 

New indicators relevant for sleep disturbance by traffic sound, capture noise events and 
therefore cannot be as easily modelled as an equivalent sound level that only depends on the 
overall exposure dose and thus the overall amount of traffic. Micro traffic simulations of the 
route of individual cars that assign a realistic range of levels have been constructed. However, 
such models are cpu-time intensive and above all require significant time to set up [2,3]. They 
therefore cannot be easily applied to large scale health effects studies.  

In the present study, we attempted to improve the prediction of sleep disturbance and potential 
long-term health effects in children and adolescents with a superior exposure characterisation, 
the sleep disturbance index (SDI). We employed machine learning that only uses open data 
available across Europe. This model can therefore easily be run with extremely limited initial 
setup time. To validate both the new indicator and the model used to calculate it and evaluate 
its predictive performance, we applied it to an Alpine cohort. 

MATERIALS AND METHODS 

Sleep Disturbance Index (SDI), an indicator for effects of noise on sleep 

The indicator for sleep disturbance has already been presented in  [4]. It is grounded in 
laboratory and field results on sleep disturbance by sound events. Hence, the definition of an 
event is considered first. 

The start of a sound event is detected when the indoor loudness exceeds a given threshold, 
N1sec,indoor > TNA, and when, at the same time, loudness is increasing, dN>0. Masking is 
implicitly included in the calculation of loudness and hence an additional criterion based on 
relative level like in the calculation of the intermittency ratio  [5] is avoided. The event is thought 
to continue until the N1sec drops 5 dB below its maximum level or when the level drops below 
the 15-minute 90 percentile value of loudness, N90.  

Once an event is detected, the probability of sleep disturbance PSD is calculated. Sleep 
disturbance can be detected via noise induced cardiac responses  [6], changes in sleep 
stages  [7], etc. For the purpose of constructing the indicator, all these outcomes are pooled 
and the main trends with respect to exposure are extracted: (1) probability of sleep disturbance 
shows an S-like curve with a threshold around 35 dBA (1-sec average) and a saturation point 
between 60 and 75 dBA; (2) the type of sound plays a role and recognition may play a role as 
well, yet the strongest evidence is found for an increase in probability of sleep disturbance 
with rise time  [8] [9]; (3) spectral content may be important but as most studies consider A-
weighted levels rather than loudness, this evidence is inconclusive  [8] [10] [11]. Based on the 
above 𝑃𝑆𝐷 = 𝑓(𝑁, 𝑑𝑁) is proposed. The pattern of subsequent noise events may be important 
for determining sleep disturbance and Markov-style models have been proposed to account 
for this [12]. When the indicator is calculated based on measurements or a traffic micro-
simulation [3], this approach could allow for observing the effect of platooning or traffic lights, 
but as most simulations will treat vehicle passages as a random Poisson process, preference 
is given to treating sleep disturbing events as independent and hence: 

𝑃𝑆𝐷,𝑇𝑘 = ∑ 𝑃𝑆𝐷,𝑖 ∏ (1 − 𝑃𝑆𝐷,𝑗)𝑖−1
𝑗=1

𝑇𝑘
𝑖=1 , 

where |Tk| is the time duration of sleep epochs, which is set to 10 minutes, inspired by [13]. 

In children, loudness perception itself may be deviant from loudness perception in adults, yet 



there is little direct evidence on this, neither from EEG based studies nor from behavioural 
research. Yet it is known that hearing threshold peaks at 6 to 8kHz in young children rather 
than at 500 Hz to 4kHz in adults. Moreover pure-tone hearing threshold is higher in young 
children [14]. 

There is some evidence that the effect threshold for sleep disturbance may increase with 
decreasing age although there are some differences depending on the outcome where EEG 
based sleep stages show a stronger dependence than cardiovascular response [15] [16].  

Considering the above and in absence of further evidence, an increase in effect threshold of 
10 dB for the age range 0-3 yrs. and of 5 dB for the age range 3-6 yrs. is used as a working 
hypothesis. 

Sound measurements are often conducted outdoors, on the one hand, because of privacy 
reasons and practical considerations, and, on the other hand, because of the uncertainty in 
the origin of the sound measured indoors. Simulations result in outdoor levels that need 
correcting to account for sound insulation of the bedroom and orientation of the bedroom in 
relation to the source. Hence, some hypotheses have to be made regarding this insulation and 
orientation. 

In [17], it was found that sleep disturbance of children correlates better with the equivalent 
noise level at the least exposed façade. This may reflect the choice of parents to orient the 
children’s sleeping room towards the quiet side as a form of coping. In [18] it was found that 
sound insulation of the façade with windows closed depends on the level outside. This is partly 
due to a coping mechanism but in Switzerland (and some other countries) the insulation of 
new buildings is related to the outdoor level.  

Taking this evidence together, several forms of coping, all depending on average outdoor 
noise levels (closing windows, insulating for sound, reorienting bedrooms), are summarized in 
an assumed frequency-dependent sound insulation index D(f), loosely fitted on data from [18], 
is given by: 

𝐷(𝑓) = min(58;  31 ∗ 𝑙𝑜𝑔10(150 + 𝑓) − 30) + 0.55 ∗ 10 ∗ 𝑙𝑜𝑔10 (10
𝐿𝑛𝑖𝑔ℎ𝑡

10 + 10
35
10) − 60 

There exists a complex interplay between the diurnal pattern of exposure and the sensitivity 
to sleep disturbance. To account for the changing sensitivity over the night, a weighting wk is 
introduced in the calculation of the nightly accumulated sleep disturbance index (SDI) where 
k refers to the sleep time interval. This weight is linearly increasing from 5:00 until 7:00 from 1 
to 2 to account for the lack of remaining bed time, preventing  deep sleep after being woken 
by an early morning noise event. The instantaneous probability of noise related sleep 
disturbance is expected to be relevant if it exceeds a natural sleep disruption probability, Pnat,Tk, 
which is kept independent of the time of the night Tk and fixed at 0.1 in the current 
implementation of the model. 

𝑆𝐷𝐼 =
1

|𝑇𝑠𝑙𝑒𝑒𝑝|
∑ 𝑅𝑒𝐿𝑢(𝑃𝑆𝐷,𝑇𝑘

𝑘𝜖𝑇𝑠𝑙𝑒𝑒𝑝

− 𝑃𝑛𝑎𝑡,𝑇𝑘)𝑤𝑘 

Children sleep longer and usually during earlier hours of the night [19,20]when traffic noise is 
still high. In the age dependent definition of the SDI, this is accounted for by adjusting the 
duration of the night to 14 hours for age range 0-3 yrs., 12 hours for 3-6 yrs, 10.5 hours for 6-
12 yrs., 9 hours for 12-18 yrs. This may be adjusted for the actual sleep duration in the specific 
sample one wants to analyse. Sleep patterns may change with age making children of different 
ages more vulnerable to sound events that occur at different times during the night. 

Example of SDI values calculated on measurements and their comparison to Lnight can be 
found in [4]. 

A machine learning model to calculate advanced noise exposure indicators 

Traffic noise models that include the contributions of individual cars to the sound level at any 



given location, and thus allow to calculate indicators such as the SDI described above, have 
the disadvantage that they take a high amount of CPU time and very long setup times. 
Therefore, they are not suitable for estimating exposome for a large population. So called 
surrogate models have been proposed as a solution since many years, yet it is with the advent 
of deep neural networks that they have seen a revival.  

To train a machine learning model to predict detailed noise indicators obtained from 
measurements, a huge number of measurements (thousands of locations) would be needed. 
Such measurements should be detailed enough to extract the additional indicators. As a 
minimal requirement, the 1/3 octave band spectral resolution combined with a temporal 
resolution of 8 times per second could be set. Such measurements are unfortunately not 
available. Hybridisation, however, could be an alternative. Running a model based on physics 
for thousands of locations and training the ML model could learn to understand and mimic 
these physical laws using a convolutional deep neural network (shown in blue in Figure 1). 
Here, this is done for 7000 locations and three traffic scenarios. Still, if some measurements 
are available the model can be fine-tuned for a local situation by adding additional layers in 
the model.  

The input features used in the model are derived from the OpenStreetMap and include 
different types of streets with their estimated traffic intensity and buildings. At short distance, 
the direction of streets, and possibly shielding and reflecting buildings, are taken into account. 
At longer distances, only average traffic and average build up area are considered. The 
estimation is based on two assumptions: (1) It is assumed that roads are built in a logical way, 
which means that the number of lanes, and the categorization of the road are appropriate for 
the expected traffic volume; (2) It is assumed that roads are used more when they connect to 
other roads. The latter is measured by the “edge betweenness” of the road segment in the 
graph.  

The indicators predicted by the model are SDI, Lnight (for reference), and related statistics on 
sound events. For training and testing during model development, indicators calculated on 15-
minute time intervals are used. On this time scale, equivalent levels are predicted within 3 dBA 
and PSD within 0.1 of their value obtained from detailed models. It should however be noted 
that a large part of this deviation is due to the stochastic nature of the detailed calculations, 
leading to changes in these levels between multiple realizations of the 15- minute traffic. Over 
a whole night, this randomness averages out and correlation between the detailed model and 
the machine learning approximation of SDI has an r2 around 0.9. 

   
Figure 1. Machine learning surrogate model (left) and the environmental features it uses (right) 

Validation data set, Alpine. 

The data used for validation was collected in 2004-2005 for the Brenner Base Tunnel Study. 
The sample included 1251 8-12 year-olds recruited from 49 public schools in the Tyrol region 
of Austria and Italy (Lower Inn, Wipp, and side valleys). Ethical approval was obtained from 
the Ethics committee of the Medical University Innsbruck (Ethics commission number 
2105/2004).  



Children answered three questions about problems falling asleep, uneasy sleep, and feeling 
tired in the morning. Reponses were provided on a 5-point scale  from never to very often.  

RESULTS  

Both the sleep disturbance index (SDI) and Lnight were calculated for road traffic with the 
machine learning model that only uses the OpenStreetMap data as a source of information. 
Note that no local traffic intensity information is used in this calculation. Overall sleep problems 
which are a combination of problems falling asleep, uneasy sleep and tiredness after sleeping 
is used as an outcome variable. The questionnaire used to assess this does not refer to noise 
explicitly. Therefore, one usually expects a lower degree of explained variance. Figure 2 
shows a trend analysis for the insomnia score versus SDI and Lnight calculated at the most ("m") 
and least ("l") exposed façade of the dwelling. The plots represent smoothed estimates of x 
vs. y, using the lowess function in the Hmisc-library  [21] and do not include information on the 
direction that the child’s bedroom is facing. 

 
Figure 2. Trends for sleep problems experienced by the study population versus road traffic noise 

Lnight (lower) at the least exposed (left) and the most exposed façade (right); upper: similar for the 

sleep disturbance score with the SDI. 

DISCUSSION 

The Lnight and SDI show a clear relationship with reported sleep problems even though traffic 



data for the specific site has not been used to obtain them. The relationship with Lnight caused 
by road traffic shows a double trend. At very low levels, there is a linear increase, while around 
45 to 50 dBA, a plateau can be seen, followed by a further increase. It should be noted that in 
the main Alpine valley, the railroad and highway run almost in parallel and direct line-of-sight 
sound propagation towards the slopes is most often possible. Hence the further decrease of 
sleep disturbance below LAeq=40dBA might be due to exposure to railway noise, which will 
include higher noise peaks at the same LAeq and Lnight by road traffic is only a proxy. It can also 
be observed that the levels at the least exposed façade seem to explain a larger range of 
sleep problem levels. This might indicate that children most often sleep at the least exposed 
façade of the house, which might be a way of coping with exposure to noise. 

Two values of the SDI for road traffic noise corresponding to an age range 3 to 6 years 
(SDI_3_6) and to an age range 6 to 12 years (SDI_6_12) have been used in a similar one-
dimensional analysis. The latter age range corresponds to the actual age of the children 
included in this study. The reader should remember that the differences between these 
indicators are caused by at the one hand a different threshold for disturbance by single events, 
at the other hand longer sleeping hours. Figure 2 left column that focusses on the least 
exposed façade, shows an almost linear regression between SDI_6_12 the insomnia score, 
for values above 3.2. This level of insomnia score corresponds to an Lnight just below 40 dBA. 
This is in line with the hypothesis in the previous paragraph that sleep disturbance at the lower 
level could be cause by other sources. Turning to the SDI_3_6, it can be seen that the range 
of insomnia scores is covered to a lesser extend and that the curve saturates, indicating that 
a further increase in expected sleep disturbance is not reflected in the insomnia score. Thus 
the higher threshold and earlier sleeping times assumed for these younger children does not 
match the observations for the 8 to 12 year olds, as expected. 

The trend between SDI_6_12 at the most exposed façade shows a double trend. Th 
breakpoint lies at an insomnia score of 3.6. A possible hypothesis for this is that at this degree 
of sleep disturbance the sleeping room of children is moved to the least exposed façade as a 
coping mechanism. It can also be observed that at very low SDI at the most exposed façade, 
a lower insomnia score is predicted than for the SDI at the least exposed façade.  

One should also keep in mind that sleep quality could also be lost for other reasons than road 
traffic noise at night. Hence, even at low SDI, sleep quality is not perfect as it can be influenced 
by other noise sources or non-noise disturbances at night. One of them could be noise 
exposure during the evening. A restorative period in the evening (calculated as L50<50dB) 
reduces the sleep problems from 4.0 to 3.5 when considered it as a single parameter (figure 
not shown). Yet, before drawing strong conclusions from this, one should keep in mind that 
dwellings that lack a restorative period in the evening will probably be exposed to high noise 
levels at night. Reversely, the lower insomnia score for low SDI at the most exposed façade 
could be related to these restorative periods during the eveneing. 

An extended structural equation model (SEM) is also being developed with these data, but will 
be reported elsewhere.Error! Reference source not found. Briefly, that model will include f
urther environmental, perceptual, and sociodemographic variables (grey/green space/air 
pollution, environmental disturbance, restorative quality of the environment, education, 
density). Preliminary tests show that both indicators (Lnight, SDI) keep their predictive value 
also in this SEM and that, when combined with an indicator that also includes railway noise 
peaks, SDI has a slightly stronger predictive power than Lnight. 

CONCLUSIONS 

We have introduced a possible indicator for sleep disturbance by traffic noise that includes 
more field knowledge obtained from various studies than Lnight. At the same time, we have 
introduced a surrogate model to efficiently calculate such an indicator as the lack of models 
may hinder its application in epidemiological research. Finally, we have applied the indicator 
and model to a sleep study in the Alpine area and show that plausible results are obtained. 
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