14th ICBEN 2023 18 - 22 JUNE BELGRADE

The association of long-term road-traffic noise exposure with the immune response and systematic inflammation

Sarah Wagner^{1,2,3}, Ute Kraus³, Kathrin Wolf³, Regina Pickford^{1,3}, Christa Meisinger⁴, Jakob Linseisen⁴, Alexandra Schneider³

¹ Ludwig-Maximilians University Munich, Institute for Medical Information Processing, Biometry, and Epidemiology, Munich, Germany ² Pettenkofer School of Public Health, Munich, Germany ³ Helmholtz Zentrum München, Institute of Epidemiology, Neuherberg, Germany

⁴ University of Augsburg, University Hospital Augsburg, Epidemiology, Faculty of Medicine, Augsburg, Germany

Background & Objectives

- Data from animal models and experimental data indicate e.g. increases in stress pathways, inflammation and oxidative stress in response to noise (Münzel et al. 2021)
- There is a lack of observational studies examining the association between environmental noise and the immune response/inflammation in humans

Methods

Study Design & Study Population

- Cross sectional design
- Participants from the KORA FIT study (2018/2019), Augsburg, Germany
- 58-69 years of age

Road Traffic Noise Exposure

- Mapped for all participants of the Augsburg agglomeration in 2017 by the Bavarian Environmental Agency
- Expressed as maximum L_{den}, 24-h
- Lower cut-off value of 40 dB(A)

Outcomes

- Leukocytes: Total white blood cell count (WBC count), Granulocytes (Eosinophils, Neutrophils, Basophils), Monocytes, Lymphocytes
- High-sensitivity C-reactive protein (hs-CRP)
- Biomarkers of the OLINK inflammation panel

Statistical Analyses

- Multiple linear regression models adjusted for age, sex, month of blood draw, and further adjusted for lifestyle factors, PM_{2.5}, NO₂, comorbidities and medication, mediators, respectively
- Forward selection of a priori defined confounders
- Effect modification by age, sex, body mass index (BMI), stress (Perceived Stress Scale, PSS-10), hypertension and multimorbidity

Results

- observed
 Significant associations were found for MCP3 (increased) and CXCL1 (decreased) across all models
- Age, sex BMI and hypertension did not influence the effects
- Associations were partly modified by perceived stress and multimorbidity

Figure 2: Effect modification by multimorbidity: Percent changes and 95% confidence intervals (CI) from the geometric mean per • 5 dB(A) increase in maximum L_{den} road traffic noise

Figure 1: Absolut changes and 95% confidence intervals (CI) from the arithmetic mean per 5 dB(A) increase in maximum $L_{\rm den}$ road traffic noise

Conclusion

- This observational study contributes to the understanding of pathways involved in cardiometabolic disease development following road traffic noise
- No associations between long-term road traffic noise, hs-CRP and the differential blood count could be observed
- Absolute changes in MCP3 and CXCL1 point towards an involvement of immunological/ inflammatory processes in disease development
- Perceived stress and multimorbidity might play a role

References

Münzel T, Sørensen M, Daiber A. Transportation noise pollution and cardiovascular disease. Nat Rev Cardiol. 2021 Mar 31. doi: 10.1038/s41569-021-00532-5.

Copyright © 2023 Sarah Wagner, sarah.wagner@helmholtz-munich.de

